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Abstract. In this work we try to generalize Bézout’s Theorem for curves, which was stated
and applied in Talks 11 and 12. To this end, we follow a geometrical approach. We start
by giving three equivalent and geometrical definitions of the degree of an arbitrary variety.
Then, we state and prove a weak version of Bézout which does not take into account the
notion of intersection multiplicity. After this, we state the full Bézout’s Theorem and give
some immediate consequences. Finally, as a nice application of Bézout’s Theorem, we study
curves of minimal degree, and state the classification theorem of varieties (of arbitrary
dimension) of minimal degree.

1. Introduction

A key step in the proof of the classification of plane cubic curves (talks 11 and 12) was
given by the following result.

Proposition 1.1. Let k be an algebraically closed field, C,C ′ ⊂ P2
k curves of degrees d, d′,

respectively, and which have no common components. Then, C and C ′ intersect exactly at
d · d′ points counted with multiplicity, i.e.∑

p∈C∩C′

Ip(C,C
′) = d · d′.

The main goal of this talk is to generalize this result to arbitrary varieties and to give
some consequences. In order to do this, we will first define the degree of a general variety in
Section 2. Then, we will state and prove Bézout’s Theorem in Section 3. Finally, in Section 4
we will prove that rational normal curves are exactly the non-degenerate curves of minimal
degree and we will state the classification of general varieties of minimal degree.

2. Degree of a variety

1. Preliminary notions. Throughout this script, we will work over an algebraically closed
field of characteristic 0. In fact, by the Lefschetz principle, we might as well work on C. We
will make no further mention to the base field unless necessary. We start by recalling the
concept of generality.

Definition 2.1. Let X = {Xp}p∈Z be a collection of objects (e.g. points, varieties, maps,
etc.) parametrized by an irreducible variety Z. We say that the general object X satisfies
property P if the set {p ∈ Z|Xp satisfies P} contains an open (and hence dense) subset of
Z.

Since we will approach the concept of degree from a geometrical point of view, we will
also need a characterization of dimension in geometrical terms.

Proposition 2.2. (Characterizations of dimension) Let X ⊆ Pn be an irreducible variety.
The following are equivalent:
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(a) The (Krull) dimension of X is k.
(b) A general (n− k)-plane in Pn intersects X at a finite set of points.
(c) k is the smallest integer such that a general (n− k − 1)-plane in Pn is disjoint from

X.
(d) Projecting from a general (n− k − 1)-plane defines a finite surjective map X → Pk.
(e) Projecting from a general (n− k − 2)-plane defines a map X → Pk+1 which is birra-

tional onto its image X and this image is a hypersurface in Pk+1.

For a proof, see [Har92] Lecture 11.

Remark 2.3. In (b), we mean that the set of points in G(n−k, n) that intersect X at a finite
set of points contains an open subset of G(n−k, n) (recall that Grassmanians are irreducible
varieties).

2. Definitions of degree. The previous proposition allows us to give a first definition of
the degree of a variety.

Definition 2.4. Let X ⊆ Pn be an irreducible k-dimensional variety. The degree of X,
denoted deg(X), is defined to be #(Ω ∩ X) where Ω is a general (n − k)-plane in Pn.
The degree of a reducible variety is defined to be the sum of the degrees of its irreducible
components.

Remark 2.5. The degree is well-defined. One way to see this is to look at the projection

Ω(k)(X) → G(n− k, n),

where Ω(k)(X) = {(Λ, p) : Λ ∈ G(n − k, n), p ∈ Λ ∩ X} is the universal k-fold hyperplane
section of X. Then, use Proposition 7.16 in [Har92] to show that a general fiber has a fixed
finite number of points. Notice that the points of the fiber over Ω correspond to the points
Ω ∩X.

A bit of an alternative overkill approach would be to prove that any (n− k)-plane Ω that
intersects X transversely gives the same degree and use the fact that a general (n−k)-plane
Ω intersects X transversely (cf. Lemma 3.9).

Our goal now is to give two further equivalent definitions of degree.

Proposition 2.6. The cardinality of a general fiber of the projection πΛ : X → Pk from a
general (n− k − 1)-plane Λ ⊂ Pn (see Proposition 2.2) equals deg(X).

Proof. Consider the continuous map

G(n− k − 1, n)× Pn → G(n− k, n)

which takes a pair (Λ, p) to the (n − k)-plane spanned by Λ and p. Of course, this is only
defined on an open set of G(n− k− 1, n)× Pn. The preimage U of the set of (n− k)-planes
that give the right degree of X will certainly contain an open subset of G(n − k − 1, n).
Consider an element Λ ∈ U and the corresponding (n− k)-plane Ω containing Λ that gives
the right degree of X. Then, Ω intersects Pk at a single point p. The fiber of πΛ over p
consists exactly of Ω ∩X.
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Figure 1. Proof of Proposition 2.6.

□

Remark 2.7. This proof shows both the equivalence and the well-definedness of this alterna-
tive definition.

Proposition 2.8. Let X ⊂ Pn be an irreducible k-dimensional variety. Then:

(a) If X ⊂ Pn is a hypersurface, then X = V (f) for an irreducible homogeneous polyno-
mial f and deg(X) = deg(f).

(b) If k < n − 1, then projecting from a general (n − k − 2)-plane defines a map
πΓ : X → Pk+1 which is birrational onto the hypersurface X = πΓ(X) ⊂ Pk+1

(see Proposition 2.2). Then, deg(X) = deg(f), where f is the irreducible polynomial
that defines X.

Proof. For (a), write f(Z0, . . . , Zn) =
∑
aIZI . Pick a general line L ⊂ Pn. By performing a

projective transformation, assume L = {Z2 = . . . = Zn = 0}. Then X ∩ L consists of points
[Z0 : Z1 : 0 : . . . : 0] satisfying f(Z0, Z1, 0, . . . , 0) =

∑
i aiZ

i
0Z

d−i
1 = 0, which in general has d

distinct solutions.1

For (b), as in the proof of Proposition 2.6, consider the continuous (on an open set) map

G(n− k − 2, n)× Pn → G(n− k − 1, n).

The preimage V of the set of (n − k − 1)-planes that give the right degree of X certainly
contains an open subset of G(n−k−2, n). Consider an element Γ ∈ V and its corresponding
(n−k−1)-plane Λ that contains Γ and gives the right degree of X. So far we have projections
πΓ : X → Pk, πΛ : X → Pk+1. We can choose Pk ⊂ Pk+1. Now, Λ intersects Pk+1 at a point
p. We can write πΛ = πp ◦ πΓ. In particular, the general fiber π−1

Λ (q) (whose cardinality
equals deg(X) by Proposition 2.6) is the same as π−1

Γ (π−1
p (q)). But π−1

p (q) is the intersection

of X with the general line p, q and since πΓ is generally one-to-one, we are done by (a).

1By Lemma 3.9, a general line intersects X transversely. By the proof of 3.11 the polynomial has d distinct
solutions.
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Figure 2. Proof of Proposition 2.8(b).

□

Remark 2.9. Again, this proof shows both the equivalence and the well-definedness of this
alternative definition.

We summarize these definitions as follows:

Definition 2.10. Let X ⊂ Pn be an irreducible k-dimensional variety. Let Ω, Λ and Γ be a
general (n−k)-plane, (n−k−1)-plane and (n−k−2)-plane. Then, the degree of X deg(X)
can be defined to be either

(i) #(Ω ∩X),
(ii) #π−1

Λ (p) for a general p ∈ Pk, or
(iii) The degree of the irreducible polynomial that defines the hypersurface πΓ(X) ⊂ Pk+1.

If X is not irreducible, the degree is defined to be the sum of the degree of its irreducible
components.

Remark 2.11. An algebraic approach to the concept of degree is also possible through the
notion of Hilbert Polynomials (cf. for example Chapter 18 in [Har92] or Section I.7 in
[Har77]). This has the downside of being a cumbersome definition, but it makes life easier
when proving general results about degree.

3. Some examples and properties. We now give some examples and easy results con-
cerning the degree.

Example 2.12. (1) The degree of a point p in Pn is 1. Indeed, a point is a 0-dimensional
irreducible variety, so in order to obtain its degree, we have to intersect with a
general n-plane, i.e. the whole Pn. This intersection only consists of the point p, so
deg(p) = 1.
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(2) Slightly more generally, the degree of a finite set of points {p1, . . . , pd} is d.
(3) The degree of a linear variety is 1. Indeed, a linear k-dimensional variety can be

described by n− k equations. When intersecting with a general (n− k)-dimensional
variety, we obtain n linear equations in n variables, which in general have a unique
solution.

(4) The degree of a hypersurface X = V (f), with f irreducible, is the degree of f .

Remark 2.13. The degree depends on the embedding into the ambient space. For example,
any linear embedding P1 ↪→ Pn has degree 1. However, the rational normal curve νn(P1),
where

νn : P1 → Pn

[X0 : X1] 7→ [Xn
0 : Xn−1

0 X1 : . . . : X
n
1 ],

is isomorphic to P1 but has degree n. Indeed, consider a general hyperplane a0Z0 + . . . +
anZn = 0. By intersecting such a hyperplane with νn(P1) we obtain an equation a0X

n
0 +

a1X
n−1
0 X1 + . . .+ adX

n
1 = 0. Since this is a degree n polynomial, it has in general n distinct

solutions.

Remark 2.14. The degree is invariant under the action of Aut(Pn).

Remark 2.15. If X ⊂ Pn is an irreducible k-dimensional variety and L is a general (n − l)-
plane with l ≤ k, then deg(X) = deg(X ∩ L).

Proof. Take the preimage of an appropriate open set U ⊂ G(n− k, n) under the map

G(n− l, n)×G(n− k + l, n) → G(n− k, n).

□

3. Bézout’s Theorem

We will state two versions of Bézout’s Theorem and prove the weaker one. We will need
a few definitions first.

1. Some preliminary definitions.

Definition 3.1. Let X, Y ⊆ Pn be two varieties and let X ∩ Y =
⋃
i

Zi be a decomposition

of the intersection into irreducible varieties. Then, we say that X and Y intersect

(1) transversely at p ∈ X ∩ Y if both X and Y are smooth at p and TpX + TpY = TpPn.
(2) transversely if they intersect transversely at every p ∈ X ∩ Y .
(3) generically transversely if for every i, X and Y intersect transversely at a general

point p ∈ Zi.

Remark 3.2. If X and Y have pure dimension and dim(X) + dim(Y ) = n, then conditions
(2) and (3) are equivalent. Clearly (2) ⇒ (3). For the converse, notice that because of the
dimension condition, for a general p ∈ Zi we have TpX ∩ TpY = {p}. Hence dim(Zi) ≤
dim(TpZi) ≤ dim(TpX ∩ TpY ) = 0. This implies that each Zi is consists only of one point,
so when speaking of a general point of Zi, we are just referring to the only point of Zi. In
particular, X ∩ Y consists of a finite number of points.
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Example 3.3. In the following, ”TI” stands for transverse intersection and ”GTI” stands for
generically transverse intersection.

(a) TI: yes, GTI: yes (b) TI: no, GTI: no (c) TI: no, GTI: no

Figure 3. Examples with a nodal cubic and a line

Figure 4. Example with a surface and a plane in P3. TI: no, GTI: yes

Definition 3.4. Let X, Y ⊆ Pn be varieties of pure dimension. We say that they intersect
properly if every irreducible component of X ∩ Y has dimension dim(X) + dim(Y )− n.

Proposition 3.5. If X, Y ⊆ Pn intersect generically transversely, then they also intersect
properly.

Proof. Exercise 1. □

2. Statement and proof of the weak version. We are now ready to state the first version
of Bézout’s Theorem.

Theorem 3.6. (Weak Bézout) Let X, Y ⊆ Pn be varieties of pure dimension. If dim(X) +
dim(Y ) ≥ n and they intersect generically transversely, then

deg(X ∩ Y ) = deg(X) · deg(Y ) (1)

Remark 3.7. (1) If dim(X)+dim(Y ) = n, by Remark 3.2 the theorem states that X ∩Y
consists of deg(X) · deg(Y ) points.

(2) The hypotheses are sharp:
(i) The base field must be algebraically closed: for example if it does not have a

square root of -1, then X = V (y), Y = V (yz − x2 − z2) ⊂ P2 do not satisfy (1).
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(ii) This does not work on the affine space: for example take two parallel distinct
lines in A2.

(iii) Pure dimension: X = V (x, y)∪ V (y− z) and Y = V (x− z) in P2 do not satisfy
(1).

(iv) dim(X) + dim(Y ) ≥ n: take two disjoint lines in P3.
(v) Generically transverse intersection: for example X = V (x2−yz), Y = V (y) ⊂ P2

intersect only at one point.

In order to prove Theorem 3.6, we will need a bunch of lemmas. We begin by stating (a
weak version of) Bertini’s Theorem, a proof of which can be found in [Har92] Lecture 17.

Theorem 3.8. (Bertini) Let X ⊂ Pn be a variety and H ⊂ Pn a general hyperplane. Then
(X ∩H)sing = Xsing ∩H.

Lemma 3.9. Let X ⊂ Pn be a k-dimensional variety. Then, a general (n − k)-plane Ω
intersects X transversely.

Proof. A general (n − k)-plane Ω is the intersection of k general hyperplanes H1, . . . , Hk.
Since Ω intersects X at a finite number of points, (X ∩ Ω)sing = ∅. Applying Bertini’s
Theorem repeatedly yields:

∅ = (X ∩ Ω)sing = (X ∩H1 ∩ . . . ∩Hk)sing

= (X ∩H1 ∩ . . . ∩Hk−1)sing ∩Hk = . . . = Xsing ∩H1 ∩ . . . ∩Hk

= Xsing ∩ Ω.

Hence, a general Ω intersects X at smooth points. Now, the fact that the set of (n−k)-planes
that are tangent to X is a proper subvariety of G(n− k, n) finishes the proof. □

Lemma 3.10. Let X, Y ⊂ Pn be varieties of pure dimensions k, l respectively. Suppose they
intersect generically transversely. Then, for a general (n−k− l)-plane Ω, (X ∩Ω) intersects
Y transversely.

Proof. By hypothesis X ∩ Y consists of irreducible components Z. In each of these com-
ponents, there are open subsets in which X and Y are smooth and their intersection is
transverse. By Lemma 3.9, a general (n − k − l)-plane intersects each Z transversely at
points at which the intersection of X and Y is transverse. □

The following is an even weaker version of Bézout’s Theorem.

Lemma 3.11. Let X ⊆ Pn be a variety of pure dimension k and Λ ⊂ Pn an (n − l)-plane
with l ≤ k. If X and Λ intersect generically transversely, then

deg(X ∩ Λ) = deg(X) (2)

Proof. Wlog assume X is irreducible. Also Wlog we can assume that k = l. Indeed, suppose
l < k. Then, by Lemma 3.10 and Remark 2.15, for a general (k − l)-plane, we would have

deg(X ∩ Λ) = deg((X ∩ Λ) ∩ Ω) = deg(X ∩ (Λ ∩ Ω)) = deg(X),

as wanted.
So suppose k = l. We will proceed by induction on codim(X) = n − k. Suppose

codim(X) = 1. Then X = V (f) for an irreducible homogeneous polynomial f . By per-
forming a projective transformation, we can assume that Λ = {Z2 = . . . = Zn = 0}. Then,
the intersection X ∩ Λ consists of points [Z0 : Z1 : 0 : . . . : 0] such that g(Z0, Z1) =
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f(Z0, Z1, 0, . . . , 0) =
∑

i aiZ
i
0Z

d−i
1 = 0. Using our third definition of degree, it will suffice to

show that this polynomial has d distinct roots. Suppose g has a double root at p = [b0 : b1].
By the chain rule, we have

0 =
∂g

∂Z0

(p) =
∂f

∂Z0

(p),

0 =
∂g

∂Z1

(p) =
∂f

∂Z1

(p).

Hence, the line Λ will be tangent to X at p, contradiction.
Now, suppose codim(X) > 1. Pick an (n− k− 2)-plane Γ ⊂ Λ that does not intersect X.

Consider the projection πΓ : X → Pk+1. Then, the points of (X ∩ Λ) correspond bijectively
to points in πΓ(X) ∩ (Λ ∩ Pk+1), which is a transverse intersection of a hypersurface and a
line, and thus we are reduced to the previous case.

Figure 5. Proof of Lemma 3.11.

□

We will also use the following result. For a proof, see for example Proposition 17.24 in
[Har92] or Theorem I.7.2 in [Har77].

Theorem 3.12. (Projective dimension theorem) Let X, Y ⊂ Pn be varieties of pure dimen-
sions k, l, respectively. Then, every irreducible component of X∩Y has dimension ≥ k+l−n.
Furthermore, if k + l − n ≥ 0, then X ∩ Y is necessarily non-empty.

Recall now the definition of the join from Talk 7.

Definition 3.13. Let X, Y ⊂ Pn be two varieties of pure dimensions k, l, respectively.
Suppose there exist complementary linear subspaces Pm,Pn−m−1 ⊂ Pn containing X and Y ,
respectively. The join of X and Y is defined to be the union

J(X, Y ) =
⋃

x∈X,y∈Y

x, y

Lemma 3.14. Under the above assumptions, dim(J(X, Y )) = k + l + 1.
Furthermore, at a point r ∈ p, q∖ {p, q}, where p ∈ X, q ∈ Y the tangent space TrJ(X, Y )

is spanned by TpX and TqY .

Proof. Propositions 11.37 and 16.14 in [Har92]. □
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Lemma 3.15. Under the above assumptions, deg(J(X, Y )) = deg(X) · deg(Y ).

Proof. Consider a general (m − k)-plane Λ′ ⊂ Pm and a general (n − k − l − 1)-plane
Λ′′ ⊂ Pn−m−1. Notice that both planes have the appropriate dimension to obtain the degrees
of X and Y . That is, Λ′ intersects X in d = deg(X) points p1, . . . , pd and Λ′′ intersects Y in
e = deg(Y ) points.

Consider the (n−k− l)-plane Λ ⊂ Pn spanned by Λ′ and Λ′′. Its intersection with J(X, Y )
will consist of the d · e lines pi, qj (here we are implicitly using the projective dimension
theorem 3.12.

By Lemma 3.9, we may assume that Λ′ and Λ′′ intersectX and Y transversely, respectively.
We claim that Λ and J(X, Y ) intersect generically transversely. Indeed, any point r ∈
J(X, Y ) lies in a line p, q with p ∈ X and q ∈ Y . A general point r ∈ J(X, Y ) will not lie in
either X or Y , so we may assume r ̸= p, q. By Lemma 3.14, the join J(X, Y ) is smooth at
such a point and

TrPn = TpPm + TqPn−m−1

= TpX + TpΛ
′ + TqY + TqΛ

′′

= TpX + TqY + TrΛ = TrJ(X, Y ) + TrΛ.

Hence, J(X, Y ) and Λ intersect generically transversely, and so by Lemma 3.11: deg(J(X, Y )) =
deg(J(X, Y ) ∩ Λ) = d · e = deg(X) · deg(Y ). □

We are now ready to give a proof of Theorem 3.6.

Proof. (of Theorem 3.6) By Lemma 3.10, we may assume that k + l = n and hence X and
Y intersect transversely.

Consider the embeddings i, j, k : Pn → P2n+1 defined by

i : [Z0 : . . . : Zn] 7→ [Z0 : . . . : Zn : 0 : . . . : 0],

j : [Z0 : . . . : Zn] 7→ [0 : . . . : 0 : Z0 : . . . : Zn],

k : [Z0 : . . . : Zn] 7→ [Z0 : . . . : Zn : Z0 : . . . : Zn].

Set X̃ = i(X), Ỹ = j(Y ), J = J(X̃, Ỹ ) and L = k(Pn). Notice that L ∩ J = {[Z0 : . . . : Zn :
Z0 : . . . : Zn]|[Z0 : . . . : Zn] ∈ X ∩ Y }. Fix r ∈ L ∩ J . Then, r ∈ p, q for p ∈ X̃ and q ∈ Ỹ ,
but r ̸= p, q because L does not intersect X̃ nor Ỹ . By Lemma 3.14, we have:

TrJ + TrL = Tpi(X) + Tqj(Y ) + Trk(X) + Trk(Y )

= (Tpi(X) + Trk(X)) + (Tqj(Y ) + Trk(Y ))

= TrP2k+1 + TrP2l+1 = TrP2n+1

Hence, L and J intersect transversely. Finally, by Lemma 3.15, we have

deg(X ∩ Y ) = #(X ∩ Y ) = #(L ∩ J) = deg(X) · deg(Y ).

□

3. Stronger Bézout’s Theorem. In order to generalize Theorem 3.6, we will need to relax
a bit the hypothesis of generically transverse. However, as Remark 3.7(v) exhibits, this will
make us also change equation (1) by something weaker.
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We begin by defining the intersection multiplicity mZ(X, Y ) when X and Y are local
complete intersections intersecting properly and Z is an irreducible component of X ∩Y (for
a more general treatment, see for example [Wei46]).

Definition 3.16. We do so in two steps:

(i) Suppose that dim(X)+dim(Y ) = n. Then, every irreducible component Z of X ∩Y
is just a point p. We define mp(X, Y ) := dimk (OPn,p/I(X) + I(Y )). It should be
mentioned that in this last equation, I(X) actually denotes I(X) · OPn,p.

(ii) Suppose X and Y have arbitrary dimension. A general (n − dim(Z))-plane Γ ⊆ Pn

intersects Z transversely and hence we may take mZ(X, Y ) := mp(X ∩ Γ, Y ∩ Γ)
for p ∈ Z ∩ Γ. Notice that X ∩ Γ and Y ∩ Γ have the right dimension so that
mp(X ∩ Γ, Y ∩ Γ) corresponds to case (i).

Remark 3.17. Notice that this coincides with the definition of Ip(C,C
′) for plane curves C,C ′

(cf. talk 11).

Proposition 3.18. The intersection multiplicity has the following properties:

(i) mZ(X, Y ) ≥ 1.
(ii) mZ(X, Y ) = 1 if, and only if, X and Y intersect transversely at a general point

p ∈ Z.
(iii) mZ(X ∪X ′, Y ) = mZ(X, Y )+mZ(X

′, Y ) if X and X ′ have no common components.

We are now ready to state the stronger version of Bézout’s Theorem.

Theorem 3.19. Let X, Y ⊆ Pn be varieties of pure dimension intersecting properly. Then

deg(X) · deg(Y ) =
∑
Z

mZ(X, Y ) · deg(Z), (3)

where the sum ranges over all irreducible components Z of X ∩ Y .

Remark 3.20. Notice that Proposition 1.1 can be obtained as a corollary of this.

4. Some consequences of Bézout’s Theorem. We end this section by giving some direct
applications of this theorem.

Corollary 3.21. Let X ⊆ Pn be an irreducible variety. Then, deg(X) = 1 if, and only if,
X is linear.

Proof. Exercise 2. □

Corollary 3.22. Let X ⊆ Pn be an irreducible k-dimensional variety and Ω ⊆ Pn be an
(n− k)-plane. The following are equivalent:

(i) Ω gives the right degree of X, i.e. the intersection Ω ∩X consists of deg(X) points.
(ii) X and Ω intersect generically transversely.
(iii) X and Ω intersect transversely.

Proof. ”(i) ⇒ (ii)” : If Ω gives the right degree, then it intersects X at d = deg(X) points
p1, . . . , pd. In particular, Ω and X intersect properly, so we can apply equation (3) to

obtain deg(X) = d =
d∑

i=1

mpi(X,Ω). By Proposition 3.18(i), mpi(X,Ω) = 1 for every i. By

Proposition 3.18(ii), this implies that X and Ω intersect generically transversely.
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”(ii) ⇒ (i)” : If X and Ω intersect generically transversely, then the weak version 3.6
already gives deg(X) = deg(X ∩ Ω).
Finally, the equivalence (ii) ⇔ (iii) was already established in Remark 3.2. □

Corollary 3.23. Let X, Y ⊆ Pn be varieties of pure dimension intersecting properly. Then

deg(X ∩ Y ) ≤ deg(X) · deg(Y ). (4)

Proof. deg(X ∩ Y ) =
∑
Z

deg(Z) ≤
∑
Z

mZ(X, Y ) deg(Z) = deg(X) · deg(Y ). □

Corollary 3.24. Let X, Y ⊆ Pn be varieties of pure dimension intersecting properly and
satisfying

deg(X ∩ Y ) = deg(X) · deg(Y ). (5)

Then, X and Y are smooth at a general point of any irreducible component of X ∩ Y . In
particular, if dim(X) + dim(Y ) = n, then X and Y are smooth at all points of X ∩ Y .

Proof. From the proof of Corollary 3.23, if equality (5) holds, then mZ(X, Y ) = 1 for every
irreducible component Z of X ∩ Y . By Proposition 3.18 this implies that X ∩ Y intersect
generically transversely. In particular, they are smooth at a general point p ∈ Z for every
irreducible component Z. □

4. Varieties of minimal degree

We begin by describing curves of minimal degree and after that we jump to arbitrary
dimensions.

1. Curves of minimal degree.

Definition 4.1. A variety X ⊂ Pn is called nondegenerate if there exists no hyperplane
containing it.

Irreducible nondegenerate curves have a lower bound on their degree:

Proposition 4.2. Let C ⊂ Pd be an irreducible nondegenerate curve. Then deg(C) ≥ d.

Proof. Suppose deg(C) < d. Pick d distinct points p1, . . . , pd ∈ C. These span a hyperplane
H ⊂ Pd. If dim(C ∩ H) = 0, then C and H would intersect properly. By Corollary 3.23,
this implies

d ≤ deg(C ∩H) ≤ deg(C) · deg(H) < d,

contradiction. Hence, we must have dim(C ∩ H) = 1. But this together with the facts
that C ∩H ⊆ C and C irreducible implies C ∩H = C and thus C ⊆ H, contradicting the
nondegeneracy of C. □

As a consequence, it makes sense to talk about irreducible nondegenerate curves of minimal
degree d. We will show that these correspond exactly to rational normal curves. We recall
(again) their definition.

Definition 4.3. A rational normal curve C ⊂ Pd is a variety which is projectively equivalent
to the image of the map

νd : P1 → Pd

[X0 : X1] 7→ [Xd
0 : Xd−1

0 X1 : . . . : X
d
1 ].
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Proposition 4.4. Rational normal curves C ⊂ Pd are exactly the irreducible nondegenerate
curves of minimal degree, that is, of degree d.

Proof. Rational normal curves have minimal degree d by Remark 2.13. They are also irre-
ducible and nondegenerate (cf. Proposition 7.2 in Talk 2).

Conversely, suppose C ⊂ Pn is an irreducible, nondegenerate curve of degree d. Pick
p1, . . . , pd+1 ∈ C distinct points. By Corollary 3.23, these are linearly independent. Since
p1, . . . pd span a hyperplane that intersects C at exactly d points, by Corollary 3.24, C
is smooth at these points (in fact, since these have been chosen arbitrarily, C is smooth
everywhere). Hence, the tangent space is well-defined at each point of C.
Consider the (d− 2)-plane Λ spanned by p1, . . . , pd−1. We define a regular map

φ : Λ∗ ∼= P1 → C ⊂ Pd

by sending a hyperplane H ⊃ Λ to the point in H ∩ C that is none of p1, . . . , pd−1, or
to pi if H is tangent to C at pi. This map has a regular inverse ψ that sends a point
p ∈ C ∖ {p1, . . . , pd−1} to the hyperplane H ∈ Λ∗ spanned by p1, . . . , pd−1, p and sends pi to
the hyperplane spanned by p1, . . . , pd−1 and the line tangent to C at pi.
Hence, we have a regular isomorphism

φ : P1 ∼−→ C ⊂ Pd.

By performing a projective equivalence, we can assume p1 = [1 : 0 : . . . : 0], p2 = [0 : 1 :
. . . : 0], . . . pd+1 = [0 : 0 : . . . : 1]. Since φ is defined on P1, it must be given by homogeneous
polynomials f0(X0, X1), . . . , fd(X0, X1) of the same degree, namely

φ([X0 : X1]) = [f0(X0, X1), . . . , fd(X0, X1)].

By intersecting C with the hyperplanes spanned by p1, . . . , p̂i, . . . pd+1, we obtain that each
fi has d distinct roots. Since C has degree d it cannot happen that they have more than d
roots, as this would contradict Bézout’s Theorem. Hence, the polynomials fi have degree d.
By the characterization of rational normal curves given in Talk 2, it suffices to check that

the polynomials fi are linearly independent. Suppose
∑

i aifi(X0, X1) = 0. Substituting
(X0, X1) by the points φ−1(pi) yields 0 = aifi(φ

−1(pi)) = ai. □

2. Varieties of minimal degree of arbitrary dimension. The classification of irre-
ducible nondegenerate curves of minimal degree is thus particularly simple. One might ask
if a similar classification exists for varieties of higher dimensions. The answer is affirmative,
but it is not as simple as for curves. In order to state it, we first show what the minimal
degree is in terms of the dimension of the variety and of the ambient space.

Proposition 4.5. Let X ⊂ Pn be an irreducible nondegenerate k-dimensional variety. Then,
deg(X) ≥ n− k + 1.

Proof. (Idea) By induction on k. The case k = 1 is Proposition 4.2. Suppose that k > 1
and that the result is true for dimensions smaller than k. The intersection of X with a
general hyperplane H ⊂ Pn is an irreducible nondegenerate (k − 1)-dimensional subvariety
of H ∼= Pn−1 (this is not easy, cf. Proposition 18.10 in [Har92]). Then:

deg(X)
(1)
= deg(X ∩H)

(2)

≥ (n− 1)− (k − 1) + 1 = n− k + 1,

where (1) follows from Remark 2.15 and (2) is the induction hypothesis. □
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Still before stating the classification theorem, we define (or recall) some important vari-
eties.

The following two definitions where already introduced in Talks 5 and 3, respectively.

Definition 4.6. Let X ⊂ Pn be a variety and p /∈ X be a point. The cone of X with vertex
p is the join J(X, p).

Definition 4.7. A Veronese variety of degree d and dimension n is a variety which is pro-
jectively equivalent to the image of the map

νd : Pn → PN

[X0 : . . . : Xn] 7→ [. . . XI . . .],

where XI ranges over all degree d monomials in X0, . . . , Xn, and N =
(
n+d
d

)
− 1.

We will be particularly interested in the case d = n = 2: a Veronese surface is a variety
which is projectively equivalent to the image of the map

ν2 : P2 → P5

[X0 : X1 : X2] 7→ [X2
0 : X2

1 : X2
2 : X0X1 : X0X2 : X1X2].

Definition 4.8. A rational normal scroll Sk,l ⊂ Pn (with n = k+l+1) is a variety constructed
as follows:

(1) Pick two complementary linear subspaces Λ,Λ′ of dimensions k, l, respectively.
(2) Pick rational normal curves C ⊂ Λ, C ′ ⊂ Λ′.
(3) Pick an isomorphism φ : C ′ → C.

(4) Set Sk,l =
⋃

p∈C′
p, φ(p).

Remark 4.9. The projective isomorphism class of Sk,l does not depend on any choice.

We are finally ready to state the classification theorem of varieties of minimal degree.
Proofs can be found in [Har81], [Xam81], [EiHa87].

Theorem 4.10. (Del Pezzo - Bertini) Let X ⊂ Pn be an irreducible nondegenerate k-
dimensional variety of minimal degree n− k + 1. Then X is exactly one of the following:

(i) a quadric hypersurface of rank at least 5,
(ii) a cone over the Verones surface, or
(iii) a rational normal scroll.

5. Exercises

1. Let X, Y ⊂ Pn be varieties of pure dimension intersecting generically transversely, and
X ∩ Y ̸= ∅. Then, X and Y intersect properly.

Solution. Fix an irreducible component Z of X ∩ Y . We want to see that it has
dimension dim(X) + dim(Y )− n. At a general point p ∈ Z (hence at some smooth point of
X and Y ), we have

dim(Z) ≤ dim(TpZ) ≤ dim(TpX ∩ TpY ) = dim(X) + dim(Y )− n.

The other inequality follows immediately from the projective dimension theorem 3.12.
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2. Let X ⊂ Pn be an irreducible variety. Prove that deg(X) = 1 if, and only if, X is
linear.

Solution. ”⇒” is Example 2.12. For the converse, we proceed by induction on k =
dim(X). If k = 0, then X is just a point, so it is linear. If k > 0, then we can pick k + 1
linearly independent points p0, . . . , pk ∈ X. Set L = span(p0, . . . , pk) and let H ⊂ Pn be a
hyperplane containing L.

We claim that X ⊆ H. Indeed, suppose X ̸⊆ H. Then X and H intersect properly (by
the projective dimension theorem). Now, by Bézout’s Theorem 3.19 we have

1 = deg(X) · deg(H) =
∑
Z

mZ(X, Y ) deg(Z).

Since mZ(X, Y ), deg(Z) ≥ 1 for every irreducible component Z of X ∩H, this intersection
must be irreducible. Hence, deg(X ∩ H) = 1 and dim(X ∩ H) = k − 1. By induction,
X ∩ H ⊂ Pn is a (k − 1)-plane that contains p0, . . . , pk, i.e. k linearly independent points,
contradiction.

To finish the the problem, just notice that

X ⊆
⋂

H⊇L hyperplane

H = L.

Since L is irreducible and dim(X) = dim(L) = k, the equality X = L holds.

3. Show that the degree of the Veronese variety νd(Pn) equals dn. Deduce that the
Veronese surface and its cone have minimal degree.

Solution. Write X = νd(Pn). By Remark 2.15, deg(X) = deg(X ∩H1∩ . . .∩Hn), where
Hi are general hyperplanes in PN (recall that N =

(
n+d
d

)
− 1). Since νd : Pn → PN is an

isomorphism onto its image, the intersection X ∩H1∩ . . .∩Hn is in bijective correspondence
with ν−1

d (H1) ∩ . . . ∩ ν−1
d (Hn).

Hence, deg(X) = #(ν−1
d (H1) ∩ . . . ∩ ν−1

d (Hn)). Now, we claim that each ν−1
d (Hi) is a

general hypersurface of Pn of degree d. Indeed, if Hi is the zero locus of a0Z0 + . . .+ aNZN ,
then ν−1

d (Hi) is the zero locus of
∑
aIX

I . Since this sum is over all multi-indices I whose
sum equals d, and the coefficients aI are general, the claim follows.
The final trick that does the job consists of using a slight generalization of Lemma 3.9.

Namely, a general hypersurface intersects a variety transversely (the proof of Lemma 3.9
can be generalized to prove this statement). Hence, the hypersurfaces ν−1

d (H1), . . . , ν
−1
d (Hn)

intersect transversely and by Bézout’s Theorem, we have

deg(X) = #(ν−1
d (H1) ∩ . . . ∩ ν−1

d (Hn)) = deg(ν−1
d (H1) ∩ . . . ∩ ν−1

d (Hn))

= deg(ν−1
d (H1)) · · · deg(ν−1

d (Hn)) = dn.

For the second part, set d = n = 2. Then ν2(P2) ⊂ P5 and deg(ν2(P2)) = 4 = 5− 2 + 1 so
the Veronese surface has minimal degree.

For the cone over the Veronese surface, notice that taking a general hyperplane sec-
tion of it, yields a variety that is projectively equivalent to ν2(P2), but now living in the
ambient space P6. In particular, taking the cone does not change the degree. Hence,
deg(cone over ν2(P2)) = 4 = 6− 3 + 1, as wanted.
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