EXOTIC EMBEDDINGS

ALEJANDRO GARCÍA RIVAS

1. INTRODUCTION

In this talk, I will discuss some of what we know about exotic embeddings of surfaces in 4-manifolds. We start by defining what we mean by "exotic embedding".

Definition 1.1. A pair of surfaces in a smooth 4-manifold X are said to be *exotically knotted* if they are isotopic through homeomorphisms but not through diffeomorphisms of X.

Some rigidity statements are already known for quite a while:

Theorem 1.2 (Abhyankar-Moh, 1975). All polynomial embeddings $\mathbb{C} \to \mathbb{C}^2$ are algebraically equivalent. In particular, there are no exotically knotted \mathbb{C} algebraically embedded in \mathbb{C}^2 .

Theorem 1.3 (Fintushel-Stern, 1999). Let X^4 be a closed, simply-connected Kähler surface. Any two smooth complex curves in X^4 which are homologous are also smoothly isotopic.

On the other hand, there are some known results about existence of exotically knotted surfaces.

Theorem 1.4 (Freedman, 1985). There are exotically knotted \mathbb{R}^2 propperly embedded in \mathbb{R}^4 .

Theorem 1.5 (Finashin-Kreck-Viro, 1988). There are exotically knotted closed nonorientable surfaces in \mathbb{R}^4 .

Remark 1.6. The orientable case is still open!

The following three results are the ones we will be concerned about in this talk.

Theorem 1.7 (Hayden, 2020). There exist pairs of exotically knotted disks properly embedded in B^{4} .¹

Theorem 1.8 (Hayden, 2021). There exist pairs of exotically knotted orientable surfaces in B^4 of arbitrary number of punctures and genus.

Theorem 1.9. For every $n \in \mathbb{N}$ there is a 2^n -tuple of pairwise exotically knotted disks in B^4 relative boundary.

2. A pair of exotically knotted disks in B^4

In this section, we prove Theorem 1.7. Consider the following 3-component link:

¹Every embedding will be assumed to be proper from now on.

FIGURE 1. The 3-component link $A \cup B \cup C$. The knot B is supposed to be closed in the obvious way (just as when taking the closure of a braid).

Note that $A \cup C, B \cup C = U^2$ are the unlink, while $A \cup B$ is a Hopf link. Now, consider the 4-manifolds B_1 and B_2 given by the Kirby diagrams

FIGURE 2. The 4-manifolds B_1 and B_2 together with the knots C_1 and C_2 .

Notice that both B_1 and B_2 are 4-balls. Let $\varphi : \partial B_1 \cong S^3 \to S^3 \cong \partial B_2$ be the diffeomorphism that swaps the dotted circle and the 0-framed 2-handle. Note that $\varphi(C_1) = C_2$. Hence, C_1 and C_2 define the same knot K in S^3 .

How does K look in S^3 ? We start with the Kirby diagram for B_1 above and slide the knot C_1 twice along the 2-handle, so that we can cancel the 1- and 2-handles while leaving the knot unaffected. This is done in Figures 3-6

FIGURE 3. B_1 before the first slide.

FIGURE 4. B_1 before the second slide.

FIGURE 5. B_1 after the slides and after cancelling the 1- and 2-handles.

FIGURE 6. The knot K in S^3 .

Note also that C_1 and C_2 bound slice disks D_1 and D_2 , respectively:

FIGURE 8. The slice disk D_2 .

Our goal is to show that these disks are exotically knotted. We will think of these disks as living in the standard B^4 . Without loss of generality, we can assume that they have the same boundary K in S^3 .

Claim 2.1. $D_1 \simeq_{top}^{\partial} D_2$

This will follow from the following theorem:

Theorem 2.2 (Conway-Powell, 2019). If $D_1, D_2 \stackrel{top}{\hookrightarrow} B^4$, $\partial D_1 = \partial D_2$, $\pi_1(B^4 \setminus D_1) \cong \pi_1(B^4 \setminus D_2) \cong \mathbb{Z}$, then $D_1 \simeq^{\partial}_{top} D_2$.

Proof. (of Claim 2.1) By the theorem, it suffices to prove $\pi_1(B^4 \setminus D_1) \cong \pi_1(B^4 \setminus D_2) \cong \mathbb{Z}$. Let's start with $B^4 \setminus D_1$. We have a chain of homotopy equivalences:

FIGURE 9. Chain of homotopy equivalences.

FIGURE 10. Handle cancellation.

Hence, $\pi_1(B^4 \setminus D_1) \cong \pi_1(1\text{-handle}) \cong \mathbb{Z}$. Now, let's work with $B^4 \setminus D_2$. By the isotopies of the appendix, $B^4 \setminus D_2$ has Kirby diagram:

FIGURE 11. Kirby diagram of $B^4 \setminus D_2$ together with generators x, y of its fundamental group.

We simply compute:

$$\pi_1(B^4 \setminus D_2) \cong \langle x, y | y^{-1} x^{-1} y x x^{-1} \rangle \cong \langle x, y | y^{-1} x^{-1} y = e \rangle \cong \langle x, y | x^{-1} y = y \rangle = \langle x, y | x = e \rangle \cong \mathbb{Z}.$$

Now, let's prove that D_1 and D_2 are not smoothly isotopic. We will argue by contradiction, so suppose $D_1 \simeq_{sm} D_2$.

Claim 2.3. There exists a diffeomorphism $F : E(D_1) \to E(D_2)$ between the exteriors of the disks, such that $F(S^3 \setminus \nu K) = S^3 \setminus \nu K$.

Proof. Since $D_1 \simeq_{sm} D_2$, there is a diffeomorphism $G : (B^4, D_1) \cong (B^4, D_2)$. Since G takes fixes K setwise, we can isotope it to obtain the desired F.

Claim 2.4. $F_{|S^3\setminus\nu K}$ is smoothly isotopic to $id_{|S^3\setminus\nu K}$.

In order to prove this, we will need some statements about hyperbolic knots.

Definition 2.5. A knot K is *hyperbolic* if its complement admits a complete Riemannian metric of constant negative curvature.

Example 2.6. The following knots are hyperbolic:

FIGURE 12. The figure eight knot and the Stevedore knot, respectively.

Theorem 2.7 (Hatcher, 1976). If K is hyperbolic, then $\pi_0 Diff(S^3 \setminus K) \cong \pi_0 Isom(S^3 \setminus K)$, *i.e. any self-diffeomorphism of* $S^3 \setminus K$ *is isotopic to an isometry.*

Proof. (of Claim 2.4) Using SnapPy and Sage, one gets that K is hyperbolic and has trivial isometry group. By the theorem above, any diffeomorphism $S^3 \setminus K \to S^3 \setminus K$ is isotopic to $id_{S^3 \setminus K}$.

By Claim 2.4, we can isotope $F : E(D_1) \to E(D_2)$ so that $F_{|S^3 \setminus \nu K} = id_{S^3 \setminus \nu K}$ at the expense of making the tubular neighborhood νK larger. Hence, on the boundary, F looks like:

FIGURE 13. The diffeomorphism $F : E(D_1) \to E(D_2)$ restricted to the boundary. Notice, in particular, where F maps J.

Notice that F(J) bounds a smoothly embedded punctured torus in $E(D_2)$, namely its Seifert surface with interior pushed inside the interior of $E(D_2)$. Since $F : E(D_1) \to E(D_2)$ is a diffeomorphism, J will also bound a smoothly embedded punctured torus in $E(D_2)$. Hence, in order to reach a contradiction it will suffice to show that this is not the case.

Recall from last talk:

Theorem 2.8 (Lisca-Matic, 1998). Let W^4 be a Stein domain with $M^3 = \partial W$. Let J be a Legendrian knot in M which boundss an orientable surface Σ . Then

$$tb(J) + |rot(J)| \le 2g(\Sigma) - 1$$

First notice that $E(D_1)$ admits the structure of a Stein domain:

FIGURE 14. A Legendrian Kirby diagram for $E(D_1)$ in standard form.

Indeed, the blue curve has $tb = writhe - \#right \ cusps = 4 - 3 = 1$. Since the only 2-handle has framing tb - 1, $E(D_1)$ admits a Stein structure. Now, the knot J can be pictured as

FIGURE 15. The knot J in $E(D_1)$.

and has tb(J) = 3, |rot(J)| = 0. But using Theorem 2.8, we have $3 \leq 2g(\Sigma) - 1$, so $g(\Sigma) \geq 2$, i.e. J does not bound a smoothly embedded punctured torus. This is the contradiction we were looking for, so we have proven Theorem 1.7.

3. Exotically knotted surfaces in B^4

In this section we prove Theorem 1.8 and Theorem 1.9. Consider the knot K and the ribbon disks D and D'.

FIGURE 16. The knot K.

FIGURE 17. The disks D and D'.

Claim 3.1. $D \simeq_{top}^{\partial} D'$.

Proof. Again, by Theorem 2.2, it suffices to prove $\pi_1(B^4 \setminus D^2) \cong \mathbb{Z}$. Following the algorithm to construct Kirby diagrams of complements of surfaces, we obtain a Kirby diagram for $B^4 \setminus D^2$:

FIGURE 18. Chain of homotopy equivalences of $B^4 \setminus D^2$.

Since $\pi_1(1\text{-handle}) \cong \mathbb{Z}$, we have $\pi_1(B^4 \setminus D^2) \cong \mathbb{Z}$. Since there is an obvious diffeomorphism $(B^4, D) \cong (B^4, D')$, we also have $\pi_1(B^4 \setminus D') \cong \mathbb{Z}$.

Now, consider the annuli

FIGURE 19. The annuli A and A'.

Since D and D' were topologically isotopic relative boundary, so will A and A'. We will show, though, that $A \not\simeq_{sm} A'$.

Claim 3.2. The double branched cover $\Sigma_2(B^4, A')$ contains a smoothly embedded 2-sphere S with $[S]^2 = -2$.

Proof. A' contains a Hopf annulus. The obvious disk in the picture below lifts to a sphere of square -2 in the double branched cover $\Sigma_2(B^4, A')$.

FIGURE 20. Hopf annulus located in A'.

11

Claim 3.3. $\Sigma_2(B^4, A)$ does not contains a smoothly embedded 2-sphere S with $[S]^2 = -2$.

Notice that this will prove $A \not\simeq_{sm} A'$. Recall from last talk:

Theorem 3.4 (Lisca-Matic, 1998). If S is a smoothly embedded surface in a Stein domain W^4 such that $[S] \neq 0$ in $H_2(W)$, then:

$$[S]^{2} + |\langle c_{1}(W), [S] \rangle| \le 2g(S) - 2.$$

For every 2-handle h_i attached along a Legendrian knot K_i , we have $\langle c_1(W), h_i \rangle = rot(K_i)$.

Proof. (of Claim 3.3) After some long computations, a Kirby diagram for $\Sigma_2(B^2, A)$ is

FIGURE 21. Kirby diagram for $\Sigma_2(B^4, A)$ in standard form.

Let J denote the knot of the above figure. One can easily compute tb(J) = -1 and rot(J) = -2. Since the framing of the 2-handle is -2, it follows that $\Sigma_2(B^4, A)$ admits a Stein structure. Now, suppose S is a smoothly embedded 2-sphere with $[S]^2 = -2$. In particular, $[S] = \neq 0$ is some multiple of the homology class h represented by the 2-handle. By Theorem 3.4, we have $\langle c_1(\Sigma_2(B^4, A), [S] \rangle \neq 0$. Hence, also:

$$2g(S) - 2 \ge [S]^2 + |\langle c_1(\Sigma_2(B^4, A), [S])| > -2.$$

It follows that g(S) > 0, contradiction.

A similar argument works for the tori T and T'

FIGURE 22. The tori T and T'.

Now, to obtain exotically knotted surfaces of arbitrary number of punctures and genus, we use the following facts.

Fact 3.5. Any orientable surface with boundary is a boundary connected sum of tori and annuli.

12

Fact 3.6. Double branched covers behave well under boundary connected sums. Namely:

 $\Sigma_2(B^4, F_1 \natural F_2) \cong \Sigma_2(B^4, F_1) \natural \Sigma_2(B^4, F_2).$

Consider the annulus A_0 and the torus T_0 .

FIGURE 23. The annulus A_0 .

FIGURE 24. The torus T_0 .

We are now ready to sketch a proof of Theorem 1.8

Proof. (of Theorem 1.8) For genus equal to 0, pick $F = A \natural_m A_0$ and $F = A' \natural_m A_0$. By the facts above, the same argument as for A and A' will carry through, as $\Sigma_2(B^4, A_0)$ has classes of square at most -4, i.e. boundary summing with A_0 will not make a sphere of square -2 appear. For positive genus, pick $F = T \natural_m A_0 \natural_k T_0$ and $F = T' \natural_m A_0 \natural_k T_0$ and the same idea applies.

Along the way, we have also proven

Corollary 3.7. All the pairs of 4-manifolds $\Sigma_2(B^4, F)$ and $\Sigma_2(B^4, F')$ are exotic.

Finally, we give a proof of Theorem 1.9.

Proof. (of Theorem 1.9 Take the 2^n possibilities of boundary summing D and D' n times. These are topologically isotopic relative boundary, because D and D' are. Let's take two of these boundary connected sums and call them D_1 and D_2 . Notice that they must differ in some position, say D_1 has a D in position i while D_2 has a D' in position i. Consider the annuli A_1 and A_2 obtained by attaching the previous band to the disk in which they differ (See figure below). Suppose D_1 and D_2 are also smoothly isotopic relative boundary. Then, so are A_1 and A_2 . However, by the previous argument, $\Sigma_2(B^4, A_2)$ contains a smoothly embedded 2-sphere of square -2, while $\Sigma_2(B^4, A_1)$ does not, contradiction.

FIGURE 25. The annuli A_1 and A_2 .

Appendix

Here we present an isotopy to go from the Kirby diagram of Figure 8 to the Kirby diagram of Figure 11.

