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1. Introduction

In this talk, I will discuss some of what we know about exotic embeddings of surfaces in
4-manifolds. We start by defining what we mean by ”exotic embedding”.

Definition 1.1. A pair of surfaces in a smooth 4-manifold X are said to be exotically knotted
if they are isotopic through homeomorphisms but not through diffeomorphisms of X.

Some rigidity statements are already known for quite a while:

Theorem 1.2 (Abhyankar-Moh, 1975). All polynomial embeddings C → C2 are algebraically
equivalent. In particular, there are no exotically knotted C algebraically embedded in C2.

Theorem 1.3 (Fintushel-Stern, 1999). Let X4 be a closed, simply-connected Kähler surface.
Any two smooth complex curves in X4 which are homologous are also smoothly isotopic.

On the other hand, there are some known results about existence of exotically knotted
surfaces.

Theorem 1.4 (Freedman, 1985). There are exotically knotted R2 propperly embedded in R4.

Theorem 1.5 (Finashin-Kreck-Viro, 1988). There are exotically knotted closed nonori-
entable surfaces in R4.

Remark 1.6. The orientable case is still open!

The following three results are the ones we will be concerned about in this talk.

Theorem 1.7 (Hayden, 2020). There exist pairs of exotically knotted disks properly embedded
in B4.1

Theorem 1.8 (Hayden, 2021). There exist pairs of exotically knotted orientable surfaces in
B4 of arbitrary number of punctures and genus.

Theorem 1.9. For every n ∈ N there is a 2n-tuple of pairwise exotically knotted disks in
B4 relative boundary.

2. A pair of exotically knotted disks in B4

In this section, we prove Theorem 1.7. Consider the following 3-component link:

1Every embedding will be assumed to be proper from now on.
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Figure 1. The 3-component link A ∪ B ∪ C. The knot B is supposed to be
closed in the obvious way (just as when taking the closure of a braid).

Note that A ∪ C,B ∪ C = U2 are the unlink, while A ∪ B is a Hopf link. Now, consider
the 4-manifolds B1 and B2 given by the Kirby diagrams

Figure 2. The 4-manifolds B1 and B2 together with the knots C1 and C2.

Notice that both B1 and B2 are 4-balls. Let φ : ∂B1
∼= S3 → S3 ∼= ∂B2 be the diffeo-

morphism that swaps the dotted circle and the 0-framed 2-handle. Note that φ(C1) = C2.
Hence, C1 and C2 define the same knot K in S3.
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How does K look in S3? We start with the Kirby diagram for B1 above and slide the
knot C1 twice along the 2-handle, so that we can cancel the 1- and 2-handles while leaving
the knot unaffected. This is done in Figures 3-6

Figure 3. B1 before the first slide.

Figure 4. B1 before the second slide.



4 ALEJANDRO GARCÍA RIVAS

Figure 5. B1 after the slides and after cancelling the 1- and 2-handles.

Figure 6. The knot K in S3.
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Note also that C1 and C2 bound slice disks D1 and D2, respectively:

Figure 7. The slice disk D1.

Figure 8. The slice disk D2.

Our goal is to show that these disks are exotically knotted. We will think of these disks
as living in the standard B4. Without loss of generality, we can assume that they have the
same boundary K in S3.

Claim 2.1. D1 ≃∂
top D2
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This will follow from the following theorem:

Theorem 2.2 (Conway-Powell, 2019). If D1, D2

top
↪→ B4, ∂D1 = ∂D2, π1(B

4 \ D1) ∼=
π1(B

4 \D2) ∼= Z, then D1 ≃∂
top D2.

Proof. (of Claim 2.1) By the theorem, it suffices to prove π1(B
4 \ D1) ∼= π1(B

4 \D2) ∼= Z.
Let’s start with B4 \D1. We have a chain of homotopy equivalences:

Figure 9. Chain of homotopy equivalences.
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Figure 10. Handle cancellation.

Hence, π1(B
4 \D1) ∼= π1(1-handle) ∼= Z. Now, let’s work with B4 \D2. By the isotopies

of the appendix, B4 \D2 has Kirby diagram:

Figure 11. Kirby diagram of B4 \ D2 together with generators x, y of its
fundamental group.

We simply compute:

π1(B
4\D2) ∼= ⟨x, y|y−1x−1yxx−1⟩ ∼= ⟨x, y|y−1x−1y = e⟩ ∼= ⟨x, y|x−1y = y⟩ = ⟨x, y|x = e⟩ ∼= Z.

□

Now, let’s prove thatD1 andD2 are not smoothly isotopic. We will argue by contradiction,
so suppose D1 ≃sm D2.

Claim 2.3. There exists a diffeomorphism F : E(D1) → E(D2) between the exteriors of the
disks, such that F (S3 \ νK) = S3 \ νK.

Proof. Since D1 ≃sm D2, there is a diffeomorphism G : (B4, D1) ∼= (B4, D2). Since G takes
fixes K setwise, we can isotope it to obtain the desired F . □

Claim 2.4. F|S3\νK is smoothly isotopic to id|S3\νK.

In order to prove this, we will need some statements about hyperbolic knots.

Definition 2.5. A knot K is hyperbolic if its complement admits a complete Riemannian
metric of constant negative curvature.
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Example 2.6. The following knots are hyperbolic:

Figure 12. The figure eight knot and the Stevedore knot, respectively.

Theorem 2.7 (Hatcher, 1976). If K is hyperbolic, then π0Diff(S3 \K) ∼= π0Isom(S3 \K),
i.e. any self-diffeomorphism of S3 \K is isotopic to an isometry.

Proof. (of Claim 2.4) Using SnapPy and Sage, one gets that K is hyperbolic and has trivial
isometry group. By the theorem above, any diffeomorphism S3 \K → S3 \K is isotopic to
idS3\K . □

By Claim 2.4, we can isotope F : E(D1) → E(D2) so that F|S3\νK = idS3\νK at the
expense of making the tubular neighborhood νK larger. Hence, on the boundary, F looks
like:

Figure 13. The diffeomorphism F : E(D1) → E(D2) restricted to the
boundary. Notice, in particular, where F maps J .

Notice that F (J) bounds a smoothly embedded punctured torus in E(D2), namely its
Seifert surface with interior pushed inside the interior of E(D2). Since F : E(D1) → E(D2)
is a diffeomorphism, J will also bound a smoothly embedded punctured torus in E(D2).
Hence, in order to reach a contradiction it will suffice to show that this is not the case.

Recall from last talk:

Theorem 2.8 (Lisca-Matic, 1998). Let W 4 be a Stein domain with M3 = ∂W . Let J be a
Legendrian knot in M which boundss an orientable surface Σ. Then

tb(J) + |rot(J)| ≤ 2g(Σ)− 1.

First notice that E(D1) admits the structure of a Stein domain:
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Figure 14. A Legendrian Kirby diagram for E(D1) in standard form.

Indeed, the blue curve has tb = writhe − #right cusps = 4 − 3 = 1. Since the only 2-
handle has framing tb−1, E(D1) admits a Stein structure. Now, the knot J can be pictured
as

Figure 15. The knot J in E(D1).
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and has tb(J) = 3, |rot(J)| = 0. But using Theorem 2.8, we have 3 ≤ 2g(Σ) − 1, so
g(Σ) ≥ 2, i.e. J does not bound a smoothly embedded punctured torus. This is the
contradiction we were looking for, so we have proven Theorem 1.7.

3. Exotically knotted surfaces in B4

In this section we prove Theorem 1.8 and Theorem 1.9. Consider the knot K and the
ribbon disks D and D′.

Figure 16. The knot K.

Figure 17. The disks D and D′.

Claim 3.1. D ≃∂
top D

′.

Proof. Again, by Theorem 2.2, it suffices to prove π1(B
4 \D2) ∼= Z. Following the algorithm

to construct Kirby diagrams of complements of surfaces, we obtain a Kirby diagram for
B4 \D2:
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Figure 18. Chain of homotopy equivalences of B4 \D2.

Since π1(1-handle) ∼= Z, we have π1(B
4\D2) ∼= Z. Since there is an obvious diffeomorphism

(B4, D) ∼= (B4, D′), we also have π1(B
4 \D′) ∼= Z. □

Now, consider the annuli

Figure 19. The annuli A and A′.

Since D and D′ were topologically isotopic relative boundary, so will A and A′. We will
show, though, that A ̸≃sm A′.

Claim 3.2. The double branched cover Σ2(B
4, A′) contains a smoothly embedded 2-sphere S

with [S]2 = −2.

Proof. A′ contains a Hopf annulus. The obvious disk in the picture below lifts to a sphere
of square -2 in the double branched cover Σ2(B

4, A′).

Figure 20. Hopf annulus located in A′.

□
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Claim 3.3. Σ2(B
4, A) does not contains a smoothly embedded 2-sphere S with [S]2 = −2.

Notice that this will prove A ̸≃sm A′.
Recall from last talk:

Theorem 3.4 (Lisca-Matic, 1998). If S is a smoothly embedded surface in a Stein domain
W 4 such that [S] ̸= 0 in H2(W ), then:

[S]2 + |⟨c1(W ), [S]⟩| ≤ 2g(S)− 2.

For every 2-handle hi attached along a Legendrian knot Ki, we have ⟨c1(W ), hi⟩ = rot(Ki).

Proof. (of Claim 3.3) After some long computations, a Kirby diagram for Σ2(B
2, A) is

Figure 21. Kirby diagram for Σ2(B
4, A) in standard form.

Let J denote the knot of the above figure. One can easily compute tb(J) = −1 and
rot(J) = −2. Since the framing of the 2-handle is -2, it follows that Σ2(B

4, A) admits a
Stein structure. Now, suppose S is a smoothly embedded 2-sphere with [S]2 = −2. In
particular, [S] ≠= 0 is some multiple of the homology class h represented by the 2-handle.
By Theorem 3.4, we have ⟨c1(Σ2(B

4, A), [S]⟩ ≠ 0. Hence, also:

2g(S)− 2 ≥ [S]2 + |⟨c1(Σ2(B
4, A), [S]⟩| > −2.

It follows that g(S) > 0, contradiction. □

A similar argument works for the tori T and T ′

Figure 22. The tori T and T ′.

Now, to obtain exotically knotted surfaces of arbitrary number of punctures and genus,
we use the following facts.

Fact 3.5. Any orientable surface with boundary is a boundary connected sum of tori and
annuli.
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Fact 3.6. Double branched covers behave well under boundary connected sums. Namely:

Σ2(B
4, F1♮F2) ∼= Σ2(B

4, F1)♮Σ2(B
4, F2).

Consider the annulus A0 and the torus T0.

Figure 23. The annulus A0.

Figure 24. The torus T0.

We are now ready to sketch a proof of Theorem 1.8

Proof. (of Theorem 1.8) For genus equal to 0, pick F = A♮mA0 and F = A′♮mA0. By the
facts above, the same argument as for A and A′ will carry through, as Σ2(B

4, A0) has classes
of square at most -4, i.e. boundary summing with A0 will not make a sphere of square -2
appear. For positive genus, pick F = T♮mA0♮kT0 and F = T ′♮mA0♮kT0 and the same idea
applies. □

Along the way, we have also proven

Corollary 3.7. All the pairs of 4-manifolds Σ2(B
4, F ) and Σ2(B

4, F ′) are exotic.

Finally, we give a proof of Theorem 1.9.

Proof. (of Theorem 1.9 Take the 2n possibilities of boundary summing D and D′ n times.
These are topologically isotopic relative boundary, because D and D′ are. Let’s take two of
these boundary connected sums and call them D1 and D2. Notice that they must differ in
some position, say D1 has a D in position i while D2 has a D′ in position i. Consider the
annuli A1 and A2 obtained by attaching the previous band to the disk in which they differ
(See figure below). Suppose D1 and D2 are also smoothly isotopic relative boundary. Then,
so are A1 and A2. However, by the previous argument, Σ2(B

4, A2) contains a smoothly
embedded 2-sphere of square −2, while Σ2(B

4, A1) does not, contradiction.

Figure 25. The annuli A1 and A2.
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□

Appendix

Here we present an isotopy to go from the Kirby diagram of Figure 8 to the Kirby diagram
of Figure 11.
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